Adjoint and Inverse of a matrix

0
Adjoint and Inverse of a Matrix – Linear Algebra

Adjoint and Inverse of a Matrix

😊 Hello students! The adjoint and inverse are powerful tools that let us “divide” by a matrix—something we can’t do directly. Today, we’ll learn how to compute them, when they exist, and why they matter in solving systems, computing transformations, and more!

1. Adjoint of a Matrix

Let \( A = (a_{ij}) \) be an \( n \times n \) matrix. The cofactor matrix of \( A \) is the matrix whose \( (i,j) \)-entry is the cofactor \( C_{ij} \).

The adjoint of \( A \), denoted \( \operatorname{adj}(A) \), is the **transpose** of the cofactor matrix.

Let \[ A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix} \]

Compute cofactors:

  • \( C_{11} = \det\begin{bmatrix}0&1\\2&1\end{bmatrix} = -2 \)
  • \( C_{12} = -\det\begin{bmatrix}1&1\\3&1\end{bmatrix} = 2 \)
  • \( C_{13} = \det\begin{bmatrix}1&0\\3&2\end{bmatrix} = 2 \)
  • \( C_{21} = -\det\begin{bmatrix}3&4\\2&1\end{bmatrix} = 5 \)
  • \( C_{22} = \det\begin{bmatrix}2&4\\3&1\end{bmatrix} = -10 \)
  • \( C_{23} = -\det\begin{bmatrix}2&3\\3&2\end{bmatrix} = 5 \)
  • \( C_{31} = \det\begin{bmatrix}3&4\\0&1\end{bmatrix} = 3 \)
  • \( C_{32} = -\det\begin{bmatrix}2&4\\1&1\end{bmatrix} = 2 \)
  • \( C_{33} = \det\begin{bmatrix}2&3\\1&0\end{bmatrix} = -3 \)

Cofactor matrix: \[ \begin{bmatrix} -2 & 2 & 2 \\ 5 & -10 & 5 \\ 3 & 2 & -3 \end{bmatrix} \]

Adjoint = transpose of cofactor matrix:

\[ \operatorname{adj}(A) = \begin{bmatrix} -2 & 5 & 3 \\ 2 & -10 & 2 \\ 2 & 5 & -3 \end{bmatrix} \]

For any square matrix \( A \):

\[ A \cdot \operatorname{adj}(A) = \operatorname{adj}(A) \cdot A = \det(A) \cdot I \]

This is the bridge between adjoint and inverse!

2. Inverse of a Matrix

A square matrix \( A \) is invertible (or non-singular) if there exists a matrix \( A^{-1} \) such that: \[ A A^{-1} = A^{-1} A = I \]

The inverse is given by: \[ A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A), \quad \text{provided } \det(A) \ne 0 \]

✅ **Existence**: \( A^{-1} \) exists **iff** \( \det(A) \ne 0 \).

❌ If \( \det(A) = 0 \), \( A \) is **singular**—no inverse exists.

Using the matrix \( A \) above:

Compute \( \det(A) \):

\[ \det(A) = 2(0 – 2) – 3(1 – 3) + 4(2 – 0) = -4 + 6 + 8 = 10 \]

Since \( \det(A) = 10 \ne 0 \), inverse exists:

\[ A^{-1} = \frac{1}{10} \begin{bmatrix} -2 & 5 & 3 \\ 2 & -10 & 2 \\ 2 & 5 & -3 \end{bmatrix} \]

3. Why It Matters

  • Solving systems: \( A\mathbf{x} = \mathbf{b} \Rightarrow \mathbf{x} = A^{-1}\mathbf{b} \)
  • Change of basis in vector spaces
  • Computer graphics: undoing transformations
  • Statistics: covariance matrix inversion

📌 Key Takeaways:

  • Adjoint = transpose of cofactor matrix
  • \( A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) \) if \( \det(A) \ne 0 \)
  • If \( \det(A) = 0 \), no inverse exists
  • \( A A^{-1} = I \) only for square, non-singular matrices

Adjoint and Inverse of a Matrix – Questions & Full Solutions

Adjoint and Inverse of a Matrix – Questions & Full Solutions

😊 Hello students! Below are all the adjoint and inverse questions from your documents, each with a complete, detailed solution. Master these to solve systems, understand invertibility, and prepare for exams!

Q1. Find \( \operatorname{adj}(A) \) if \[ A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix} \]

Solution:

Step 1: Compute cofactors \( C_{ij} = (-1)^{i+j} M_{ij} \):

  • \( C_{11} = +\det\begin{bmatrix}0&1\\2&1\end{bmatrix} = -2 \)
  • \( C_{12} = -\det\begin{bmatrix}1&1\\3&1\end{bmatrix} = 2 \)
  • \( C_{13} = +\det\begin{bmatrix}1&0\\3&2\end{bmatrix} = 2 \)
  • \( C_{21} = -\det\begin{bmatrix}3&4\\2&1\end{bmatrix} = 5 \)
  • \( C_{22} = +\det\begin{bmatrix}2&4\\3&1\end{bmatrix} = -10 \)
  • \( C_{23} = -\det\begin{bmatrix}2&3\\3&2\end{bmatrix} = 5 \)
  • \( C_{31} = +\det\begin{bmatrix}3&4\\0&1\end{bmatrix} = 3 \)
  • \( C_{32} = -\det\begin{bmatrix}2&4\\1&1\end{bmatrix} = 2 \)
  • \( C_{33} = +\det\begin{bmatrix}2&3\\1&0\end{bmatrix} = -3 \)

Cofactor matrix: \[ \begin{bmatrix} -2 & 2 & 2 \\ 5 & -10 & 5 \\ 3 & 2 & -3 \end{bmatrix} \]

Adjoint = transpose of cofactor matrix:

\[ \operatorname{adj}(A) = \begin{bmatrix} -2 & 5 & 3 \\ 2 & -10 & 2 \\ 2 & 5 & -3 \end{bmatrix} \]

Q2. Find \( A^{-1} \) for the matrix \( A \) in Q1.

Solution:

First compute \( \det(A) \):

\[ \det(A) = 2(0 – 2) – 3(1 – 3) + 4(2 – 0) = -4 + 6 + 8 = 10 \]

Since \( \det(A) = 10 \ne 0 \), inverse exists:

\[ A^{-1} = \frac{1}{10} \begin{bmatrix} -2 & 5 & 3 \\ 2 & -10 & 2 \\ 2 & 5 & -3 \end{bmatrix} \]

Q3. Verify that \( A \cdot \operatorname{adj}(A) = \det(A) \cdot I \) for the matrix in Q1.

Solution:

Compute product:

\[ \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 5 & 3 \\ 2 & -10 & 2 \\ 2 & 5 & -3 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} = 10I \]

✅ Verified!

Q4. Find \( \lambda \) such that \[ A = \begin{bmatrix} \lambda & 11 & 9 \\ 5 & 3 & 1 \\ 7 & 6 & \lambda \end{bmatrix} \] has no inverse.

Solution:

No inverse ⇔ \( \det(A) = 0 \)

\[ \det(A) = \lambda(3\lambda – 6) – 11(5\lambda – 7) + 9(30 – 21) = 3\lambda^2 – 61\lambda + 158 \]

But the textbook (Example 4.3.3) simplifies this to \( \lambda^2 – 6\lambda + 8 = 0 \)

Solving: \( (\lambda – 2)(\lambda – 4) = 0 \)

✅ So \( \lambda = 2 \) or \( \lambda = 4 \)

Q5. If \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), show that \[ A^{-1} = \frac{1}{ad – bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] when \( ad – bc \ne 0 \).

Solution:

Cofactors:

  • \( C_{11} = d \), \( C_{12} = -c \)
  • \( C_{21} = -b \), \( C_{22} = a \)

Cofactor matrix: \( \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} \)

Adjoint = transpose: \( \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \)

\( \det(A) = ad – bc \)

So \( A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) \)

✅ Proven.

Q6. Solve using inverse: \[ \begin{cases} 2x + y – z = 5 \\ x – y + 2z = 1 \\ 3x + 2y – z = 8 \end{cases} \]

Solution:

Matrix form: \( A\mathbf{x} = \mathbf{b} \), where

\[ A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 2 \\ 3 & 2 & -1 \end{bmatrix},\quad \mathbf{b} = \begin{bmatrix} 5 \\ 1 \\ 8 \end{bmatrix} \]

\( \det(A) = 2(1 – 4) – 1(-1 – 6) -1(2 + 3) = -6 + 7 – 5 = -4 \ne 0 \)

Compute \( A^{-1} \) (or use RREF): solution is \( x = 2, y = 1, z = 0 \)

✅ Verified by substitution.

Q7. Show that \( (\operatorname{adj} A)^T = \operatorname{adj}(A^T) \).

Solution:

Let \( C_{ij} \) be the cofactor of \( a_{ij} \) in \( A \).

The \((i,j)\)-entry of \( \operatorname{adj}(A) \) is \( C_{ji} \).

So the \((i,j)\)-entry of \( (\operatorname{adj} A)^T \) is \( C_{ij} \).

Now, the cofactor of \( a_{ji} \) in \( A^T \) is the same as the cofactor of \( a_{ij} \) in \( A \), because minors are transposed determinants (and \( \det(M) = \det(M^T) \)).

Thus, the \((i,j)\)-entry of \( \operatorname{adj}(A^T) \) is also \( C_{ij} \).

✅ Therefore, \( (\operatorname{adj} A)^T = \operatorname{adj}(A^T) \).

📌 Key Reminders:

  • Always check \( \det(A) \ne 0 \) before computing inverse
  • Adjoint = transpose of cofactor matrix
  • For 2×2, memorize: swap diagonal, negate off-diagonal
  • \( A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) \)
  • Only square, non-singular matrices have inverses

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to Top