Back to: Mathematics – Freshman Courses
Chapter 1: Propositional Logic and Set Theory
1.2 Open Propositions and Quantifiers
In the previous section, we worked with propositions—statements that are definitively True or False. However, many mathematical sentences contain variables, and their truth value depends on what values are substituted for those variables. Such sentences are called open propositions (or predicates).
1.2.1 What is an Open Proposition?
- It becomes a proposition when specific values are substituted for the variables.
- Its truth value depends on those substituted values.
- \( P(x): \) “\(x\) is the day before Sunday.”
→ True if \(x = \text{Saturday}\); False otherwise. - \( Q(y): \) “\(y\) is a city in Africa.”
→ True if \(y = \text{Addis Ababa}\); False if \(y = \text{London}\). - \( R(x): x + 4 = -9 \)
→ True only when \(x = -13\).
Important Note: An open proposition is not a proposition until all its variables are replaced by specific values from a clearly defined universal set.
The universal set \( U \) is the collection of all allowable values for the variable(s) in an open proposition.
- \( P(-1) = \text{True} \)
- \( P(-\frac{1}{2}) = \text{False} \)
- \( P(0) = \text{False} \)
- \( P(1) = \text{True} \)
1.2.2 Equivalence of Open Propositions
Define:
\( P(x): x^2 – 1 = 0 \)
\( Q(x): |x| \geq 1 \)
Then for every \( a \in U \), \( P(a) \) and \( Q(a) \) are both True or both False. Hence, \( P(x) \equiv Q(x) \) over \( U \).
1.2.3 Tautologies for Open Propositions
1.2.4 Converting Open Propositions into Propositions: Quantifiers
Since open propositions are not yet propositions, we use quantifiers to bind their variables and produce definite truth values.
The phrase “for every \( x \in U \)” is symbolized by \( \forall x \).
The statement \( (\forall x)P(x) \) means:
“For all \( x \) in the universal set, \( P(x) \) is true.”
The phrase “there exists an \( x \in U \)” is symbolized by \( \exists x \).
The statement \( (\exists x)P(x) \) means:
“There is at least one \( x \) in the universal set for which \( P(x) \) is true.”
Then \( (\forall x)P(x) \) is True.
Let \( Q(x): x < x^2 \), with \( U = \mathbb{R} \).
Then \( (\forall x)Q(x) \) is False (counterexample: \( x = \frac{1}{2} \)).
But \( (\exists x)Q(x) \) is True (e.g., \( x = -1 \)). Let \( R(x): |x| = -1 \).
Then \( (\exists x)R(x) \) is False (no real number has negative absolute value).
1.2.5 Four Fundamental Quantified Statements
Given an open proposition \( P(x) \), the following four statements are central:
| Statement | English Translation |
|---|---|
| \( (\forall x)P(x) \) | Everything has property \( P \). |
| \( (\exists x)P(x) \) | Something has property \( P \). |
| \( (\forall x)\neg P(x) \) | Nothing has property \( P \). |
| \( (\exists x)\neg P(x) \) | Something does not have property \( P \). |
Notice:
- \( (\exists x)\neg P(x) \) is the negation of \( (\forall x)P(x) \).
- \( (\forall x)\neg P(x) \) is the negation of \( (\exists x)P(x) \).
1.2.6 Negation of Quantified Statements
- \( \neg(\forall x)P(x) \equiv (\exists x)\neg P(x) \)
- \( \neg(\exists x)P(x) \equiv (\forall x)\neg P(x) \)
- Flip \( \forall \leftrightarrow \exists \)
- Negate the open proposition \( P(x) \)
- \( \neg(\exists x)(x < x^2) \equiv (\forall x)\neg(x < x^2) \equiv (\forall x)(x \geq x^2) \)
- \( \neg(\forall x)(4x + 1 = 0) \equiv (\exists x)(4x + 1 \ne 0) \)
1.2.7 Translating English into Quantified Logic
Common translations (with \( U = \mathbb{R} \) or appropriate context):
| English Sentence | Logical Form |
|---|---|
| All rationals are reals. | \( (\forall x)(\mathbb{Q}(x) \Rightarrow \mathbb{R}(x)) \) |
| No rationals are reals. | \( (\forall x)(\mathbb{Q}(x) \Rightarrow \neg\mathbb{R}(x)) \) |
| Some rationals are reals. | \( (\exists x)(\mathbb{Q}(x) \land \mathbb{R}(x)) \) |
| Some rationals are not reals. | \( (\exists x)(\mathbb{Q}(x) \land \neg\mathbb{R}(x)) \) |
but “Some \( A \) are \( B \)” uses conjunction (\( \land \)).
1.2.8 Multiple Quantifiers
Quantifiers can be nested. Order matters!
- \( (\forall x)(\forall y)P(x,y) \): “For all \( x \) and all \( y \), \( P(x,y) \) holds.”
- \( (\exists x)(\exists y)P(x,y) \): “There exist \( x \) and \( y \) such that \( P(x,y) \) holds.”
- \( (\forall x)(\exists y)P(x,y) \): “For every \( x \), there exists a \( y \) (possibly depending on \( x \)) such that \( P(x,y) \) holds.”
- \( (\exists x)(\forall y)P(x,y) \): “There exists an \( x \) that works for all \( y \).”
- \( (\exists x)(\exists y)P(x,y) \): True (e.g., \( x=4, y=1 \))
- \( (\exists x)(\forall y)P(x,y) \): False (no single \( x \) works for all \( y \))
- \( (\forall x)(\exists y)P(x,y) \): True (for any \( x \), choose \( y = 5 – x \))
- \( (\forall x)(\forall y)P(x,y) \): False (e.g., \( x=2,y=7 \Rightarrow 9 \ne 5 \))
\( (\exists y)(\forall x)P(x,y) \Rightarrow (\forall x)(\exists y)P(x,y) \),
but the converse is not true.
1.2.9 Summary of Key Ideas
- An open proposition contains variables and becomes a proposition only when values are assigned.
- The universal set \( U \) defines allowable values for variables.
- Quantifiers (\( \forall, \exists \)) turn open propositions into propositions.
- Negation flips the quantifier and negates the predicate.
- Order of multiple quantifiers is crucial—\( \forall\exists \ne \exists\forall \).
End of Section 1.2 – Open Propositions and Quantifiers
Section 1.2: Open Propositions and Quantifiers – Exercises with Full Solutions
a. \(P(x, y): x^2 – y^2 = 0\), \(Q(x, y): x = y\), \((x, y) \in \{(1, -1), (3, 4), (5, 5)\}\).
b. \(P(x, y): |x| = |y|\), \(Q(x, y): x = y\), \((x, y) \in \{(1, 2), (2, -2), (6, 6)\}\).
c. \(P(x, y): x^2 + y^2 = 1\), \(Q(x, y): x + y = 1\), \((x, y) \in \{(1, -1), (-3, 4), (0, -1), (1, 0)\}\).
Recall: \(P \Rightarrow Q\) is **false only when \(P\) is true and \(Q\) is false**.
a.
- \((1, -1)\): \(P: 1 – 1 = 0\) → T; \(Q: 1 = -1\) → F ⇒ \(P \Rightarrow Q = \textbf{F}\)
- \((3, 4)\): \(P: 9 – 16 = -7 \ne 0\) → F ⇒ implication = T
- \((5, 5)\): \(P: 25 – 25 = 0\) → T; \(Q: 5 = 5\) → T ⇒ T
- \((1, 2)\): \(|1| = 1 \ne 2 = |2|\) → \(P = F\) ⇒ T
- \((2, -2)\): \(|2| = |-2| = 2\) → \(P = T\); \(Q: 2 = -2\) → F ⇒ \(P \Rightarrow Q = \textbf{F}\)
- \((6, 6)\): both T ⇒ T
- \((1, -1)\): \(1 + 1 = 2 \ne 1\) → \(P = F\) ⇒ T
- \((-3, 4)\): \(9 + 16 = 25 \ne 1\) → \(P = F\) ⇒ T
- \((0, -1)\): \(0 + 1 = 1\) → \(P = T\); \(Q: 0 + (-1) = -1 \ne 1\) → F ⇒ **F**
- \((1, 0)\): \(1 + 0 = 1\) → \(P = T\); \(Q: 1 + 0 = 1\) → T ⇒ T
– \((\forall x \in O)P(x)\): “For every odd integer \(x\), \(x^2 + 1\) is even.”
– \((\exists y \in O)Q(x)\): “There exists an odd integer \(y\) such that \(y^2\) is even.”
Note: The second statement is **false** (since square of odd is always odd), but the request was only to translate into words.
a. For every rational number \(r\), the number \(\frac{1}{r}\) is rational.
b. There exists a rational number \(r\) such that \(r^2 = 2\).
Use: \(\neg(\forall x)P(x) \equiv (\exists x)\neg P(x)\), and \(\neg(\exists x)P(x) \equiv (\forall x)\neg P(x)\).
a. \(\neg\big[(\forall r \in \mathbb{Q})(\frac{1}{r} \in \mathbb{Q})\big] \equiv (\exists r \in \mathbb{Q})(\frac{1}{r} \notin \mathbb{Q})\)
→ “There exists a rational number \(r\) such that \(\frac{1}{r}\) is **not** rational.”
b. \(\neg\big[(\exists r \in \mathbb{Q})(r^2 = 2)\big] \equiv (\forall r \in \mathbb{Q})(r^2 \ne 2)\)
→ “For every rational number \(r\), \(r^2 \ne 2\).”
a. \((\forall n \in \mathbb{Z})P(n)\)
b. \((\exists n \in \mathbb{Z})P(n)\)
\(P(n)\) is true ⇔ \(5n – 6\) divisible by 3 ⇔ \(5n \equiv 6 \pmod{3}\) ⇔ \(2n \equiv 0 \pmod{3}\) ⇔ \(n \equiv 0 \pmod{3}\).
a. **False.** Counterexample: \(n = 1\) → \((5 – 6)/3 = -1/3\) → not integer.
b. **True.** Example: \(n = 3\) → \((15 – 6)/3 = 9/3 = 3\) → integer.
a. \((\exists x \in \mathbb{R})(x^2 – x = 0)\)
b. \((\forall x \in \mathbb{N})(x + 1 \geq 2)\)
c. \((\forall x \in \mathbb{R})(\sqrt{x^2} = x)\)
d. \((\exists x \in \mathbb{Q})(3x^2 – 27 = 0)\)
e. \((\exists x \in \mathbb{R})(\exists y \in \mathbb{R})(x + y + 3 = 8)\)
f. \((\exists x \in \mathbb{R})(\exists y \in \mathbb{R})(x^2 + y^2 = 9)\)
g. \((\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x + y = 5)\)
h. \((\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x + y = 5)\)
a. **True** (e.g., \(x = 0\) or \(x = 1\))
b. **True** (since \(\mathbb{N} = \{1,2,3,\dots\}\), so \(x+1 \ge 2\))
c. **False** (e.g., \(x = -1\): \(\sqrt{(-1)^2} = 1 \ne -1\))
d. **True** → \(x^2 = 9\) → \(x = \pm 3 \in \mathbb{Q}\)
e. **True** (e.g., \(x = 2, y = 3\))
f. **True** (e.g., \(x = 0, y = 3\))
g. **True**: for any \(x\), choose \(y = 5 – x\)
h. **False**: no single \(x\) works for **all** \(y\)
a. Express this in symbols.
b. Is it true or false?
c. Express its negation in symbols.
d. Is the negation true?
a. \((\forall x \in A)(\forall y \in A)(xy – 2 \text{ is prime})\)
b. Check all pairs:
- \(3 \cdot 3 – 2 = 7\) → prime
- \(3 \cdot 5 – 2 = 13\) → prime
- \(3 \cdot 11 – 2 = 31\) → prime
- \(5 \cdot 3 – 2 = 13\)
- \(5 \cdot 5 – 2 = 23\)
- \(5 \cdot 11 – 2 = 53\)
- \(11 \cdot 3 – 2 = 31\)
- \(11 \cdot 5 – 2 = 53\)
- \(11 \cdot 11 – 2 = 119 = 7 \cdot 17\) → **not prime**
c. Negation: \((\exists x \in A)(\exists y \in A)(xy – 2 \text{ is not prime})\)
d. **True** (e.g., \(x = y = 11\))
a. State \((\forall x \in A)(\exists y \in B)P(x, y)\) in words.
b. Show it is true.
a. “For every \(x\) in \(\{2,3,5\}\), there exists a \(y\) in \(\{2,4,6\}\) such that \(\frac{x}{y} < 1\).”
b. Verify:
- \(x = 2\): choose \(y = 4\) → \(2/4 = 0.5 < 1\)
- \(x = 3\): choose \(y = 4\) → \(3/4 = 0.75 < 1\)
- \(x = 5\): choose \(y = 6\) → \(5/6 < 1\)
a. State \((\exists y \in B)(\forall x \in A)P(x, y)\) in words.
b. Show it is true.
a. “There exists a \(y \in \{3,6,10\}\) such that for **every** \(x \in \{3,5,8\}\), \(x – y < 0\).”
b. Try \(y = 10\):
- \(3 – 10 = -7 < 0\)
- \(5 – 10 = -5 < 0\)
- \(8 – 10 = -2 < 0\)
All exercises from Section 1.2: Open Propositions and Quantifiers with complete solutions.