Row reduced echelon form of a matrix

0
Row Reduced Echelon Form – Linear Algebra

Row Reduced Echelon Form of a Matrix

😊 Hello, students! Today, we unlock one of the most powerful tools in linear algebra: the row reduced echelon form (RREF). It’s the β€œsimplest” version of a matrix that preserves all the information about solutions to linear systems. By the end of this lesson, you’ll be able to reduce any matrix to RREF β€” and understand why each step matters.

1. What Is a Leading Entry?

In a non-zero row of a matrix, the leading entry is the leftmost non-zero entry.

In the row \( [0\ 0\ 3\ -1\ 2] \), the leading entry is \( 3 \) (in column 3).

2. Row Echelon Form (REF)

A matrix is in row echelon form (REF) if it satisfies all of the following:

  1. All zero rows (if any) are at the bottom.
  2. Each leading entry of a row is to the right of the leading entry of the row above it.
  3. All entries below a leading entry are zero.

Example of REF:

\[ \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Notice: leading entries at (1,1) and (2,3); zero row at bottom; zeros below each pivot.

3. Reduced Row Echelon Form (RREF)

A matrix is in reduced row echelon form (RREF) if it is in REF and satisfies two more conditions:

  1. Every leading entry is 1 (called a pivot).
  2. Each leading 1 is the only non-zero entry in its column.

Example of RREF:

\[ \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

Every pivot is 1, and all entries above and below each pivot are 0.

πŸ€” Key insight: RREF is unique! Every matrix is row-equivalent to exactly one RREF matrix. This is why it’s so powerful.

4. Why Do We Care About RREF?

RREF reveals everything about a linear system \( A\mathbf{x} = \mathbf{b} \):

  • Consistency: Is there a solution?
  • Uniqueness: Exactly one, or infinitely many?
  • Rank: Number of pivots = rank of the matrix.
  • Basis for row/column space: Pivot rows/columns form bases.

5. How to Reduce a Matrix to RREF

Use elementary row operations only:

  1. Row swap: \( R_i \leftrightarrow R_j \)
  2. Scaling: \( R_i \to kR_i \), \( k \ne 0 \)
  3. Replacement: \( R_i \to R_i + kR_j \), \( i \ne j \)

Example: Reduce \[ A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix} \] to RREF.

Step 1: Make leading entry in row 1 equal to 1:
\( R_1 \to \frac{1}{2}R_1 \)

\[ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix} \]

Step 2: Eliminate below pivot (col 1):
\( R_2 \to R_2 – R_1 \), \( R_3 \to R_3 – 3R_1 \)

\[ \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{bmatrix} \]

Step 3: Make pivot in row 2:
\( R_2 \to -R_2 \)

\[ \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{bmatrix} \]

Step 4: Eliminate below (and above!) pivot in col 2:
\( R_3 \to R_3 + R_2 \), then \( R_1 \to R_1 – 2R_2 \)

\[ \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \]

βœ… This is RREF! Note the zero row at bottom and pivots only in cols 1 and 2.

😠 Common mistake: Forgetting to eliminate entries above the pivot when going to RREF (not just REF!).

6. Rank from RREF

The rank of a matrix \( A \), denoted \( \text{rank}(A) \), is the number of non-zero rows in its RREF (i.e., number of pivots).

In the example above, RREF has 2 non-zero rows β‡’ \( \text{rank}(A) = 2 \).

7. Applications of RREF

Solving \( A\mathbf{x} = \mathbf{0} \)
From RREF, identify:

  • Pivot variables (corresponding to pivot columns)
  • Free variables (non-pivot columns)
Express solution in parametric vector form.

😊 Fun fact: RREF is the backbone of computer algorithms for solving linear systems, computing inverses, and even in machine learning (e.g., solving normal equations in least squares).

8. Summary: REF vs RREF

Property REF RREF
Zero rows at bottom βœ… βœ…
Staircase pattern βœ… βœ…
Zeros below pivots βœ… βœ…
Pivots = 1 ❌ (not required) βœ…
Zeros above pivots ❌ βœ…
Uniqueness ❌ (many possible) βœ… (only one)

9. Self-Check: Test Your Understanding

  1. Is the following matrix in RREF? \[ \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \]
  2. What is the rank of the matrix in (1)?
  3. Reduce \( \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \) to RREF.

Answers: (1) Yes! (2) 2 (3) \( \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} \)

Row Reduced Echelon Form – Questions & Full Solutions

Row Reduced Echelon Form – Questions & Full Solutions

😊 Hello, students! Below are all questions from your documents on row reduced echelon form (RREF), each with a full solution. Use this to master Gaussian elimination, pivots, and consistency!

Q1. Determine which of the following matrices are in **row reduced echelon form (RREF)**:

\[ \text{(a)}\ \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{(b)}\ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{(c)}\ \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix} \]

Solution:

Recall RREF requires:

  1. Leading entry in each non-zero row is 1 (pivot).
  2. Each pivot is the only non-zero entry in its column.
  3. Pivots move strictly right as we go down.
  4. Zero rows at bottom.

  • (a) ❌ Not RREF β€” column 3 has non-zero entries above and below pivot (no pivot in col 3).
  • (b) ❌ Not RREF β€” leading 1 in row 1, but column 2 and 3 have non-zero entries in same row β€” and no pivot in col 2.
  • (c) βœ… RREF β€” all pivots = 1, zeros above and below, staircase pattern, no zero rows.

Q2. Reduce the matrix to RREF:

\[ A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 5 & 1 & 4 \\ 1 & 1 & -4 & -1 \end{bmatrix} \]

Solution:

Step 1: Eliminate below pivot in col 1:

  • \( R_2 \to R_2 – 2R_1 \)
  • \( R_3 \to R_3 – R_1 \)
\[ \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 3 & 2 \\ 0 & -1 & -3 & -2 \end{bmatrix} \]

Step 2: Eliminate below and above pivot in col 2:

  • \( R_3 \to R_3 + R_2 \)
  • \( R_1 \to R_1 – 2R_2 \)
\[ \begin{bmatrix} 1 & 0 & -7 & -3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

βœ… This is RREF. Pivot columns: 1 and 2. Rank = 2.

Q3. The following matrix is in RREF. What is its rank?

\[ \begin{bmatrix} 1 & 0 & 2 & 0 & -1 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

Solution:

Count non-zero rows: there are **3**.

βœ… Rank = 3.

Q4. Solve the system using RREF:

\[ \begin{cases} x + 2y + z = 3 \\ 2x + 5y + 3z = 8 \\ -x – y = -1 \end{cases} \]

Solution:

Augmented matrix:

\[ \left[\begin{array}{ccc|c} 1 & 2 & 1 & 3 \\ 2 & 5 & 3 & 8 \\ -1 & -1 & 0 & -1 \end{array}\right] \]

Row reduce:

  • \( R_2 \to R_2 – 2R_1 \), \( R_3 \to R_3 + R_1 \)
  • \( R_3 \to R_3 – R_2 \)
  • Back-substitute to RREF
\[ \left[\begin{array}{ccc|c} 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right] \]

Let \( z = t \) (free variable). Then:

  • \( y = 2 – t \)
  • \( x = -1 + t \)

βœ… General solution: \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad t \in \mathbb{R} \]

Q5. Reduce to RREF and determine consistency:

\[ \left[\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 2 & 2 & 2 & 5 \\ 3 & 3 & 3 & 6 \end{array}\right] \]

Solution:

Row ops:

  • \( R_2 \to R_2 – 2R_1 \) β†’ row becomes \([0\ 0\ 0\ |\ 1]\)
  • \( R_3 \to R_3 – 3R_1 \) β†’ row becomes \([0\ 0\ 0\ |\ 0]\)
\[ \left[\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right] \]

Last non-zero row: \( 0 = 1 \) β†’ **inconsistent**.

βœ… No solution.

Q6. Reduce to RREF and solve:

\[ \left[\begin{array}{ccc|c} 2 & 1 & -1 & 5 \\ 1 & -1 & 2 & 1 \\ 3 & 2 & -1 & 8 \end{array}\right] \]

Solution:

Swap \( R_1 \leftrightarrow R_2 \), then eliminate:

\[ \xrightarrow{\text{RREF}} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right] \]

βœ… Unique solution: \( x = 2,\ y = 1,\ z = 0 \).

Q7. Find the RREF and rank of:

\[ A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \\ -1 & -3 & -2 \end{bmatrix} \]

Solution:

All rows are multiples of row 1:

  • \( R_2 \to R_2 – 2R_1 \)
  • \( R_3 \to R_3 + R_1 \)
\[ \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

βœ… Rank = 1.

πŸ“Œ Key Takeaways:

  • RREF is unique for any matrix.
  • Rank = number of pivots = non-zero rows in RREF.
  • System is consistent ⇔ no row of form \([0\ \cdots\ 0\ |\ c]\) with \( c \ne 0 \).
  • Free variables β†’ infinitely many solutions.

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to Top