Back to: Mathematics – Freshman Courses
Chapter 1: Propositional Logic and Set Theory
1.4 Set Theory
Set theory is the foundation of modern mathematics. It provides the language and tools to describe collections of objects, define functions, and reason about infinity, logic, and structure. In this section, we explore the basic concepts of sets, their representations, relationships, and operations.
1.4.1 The Concept of a Set
“Well-defined” means that for any object, we can definitively say whether it belongs to the set or not.
- The set of vowels in English:
{a, e, i, o, u} - The set of prime numbers less than 10:
{2, 3, 5, 7} - Not a set: “The set of all large numbers” — not well-defined.
- If \( x \) is an element of set \( A \), we write \( x \in A \).
- If \( x \) is not in \( A \), we write \( x \notin A \).
- Sets are usually denoted by capital letters: \( A, B, C, \dots \)
- Elements are denoted by lowercase letters: \( a, b, c, \dots \)
1.4.2 Description of Sets
There are four main ways to describe a set:
1. Verbal Method
Describe the set in words.
2. Roster (Complete Listing) Method
List all elements within curly braces, without repetition.
- Order doesn’t matter: \( \{1,2\} = \{2,1\} \)
- No duplicates: \( \{a,a,b\} = \{a,b\} \)
3. Partial Listing (Pattern) Method
Used when the set is too large (or infinite). Show a pattern with ellipses (\(…\)).
- Natural numbers: \( \mathbb{N} = \{1, 2, 3, \dots\} \)
- Integers: \( \mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} \)
4. Set-Builder Method
Define a set by a property that all elements satisfy.
Read as: “The set of all \(x\) such that \(P(x)\) is true.”
- \( A = \{ x \in \mathbb{Z} \mid x \text{ is even} \} \)
- \( B = \{ x \in \mathbb{R} \mid x^2 – 4 = 0 \} = \{-2, 2\} \)
1.4.3 Special Sets
1.4.4 Relationships Between Sets
Formally: \( (\forall x)(x \in B \Rightarrow x \in A) \)
Then:
- \( B \subseteq A \) and \( B \subset A \)
- \( C \subseteq A \) but \( C \not\subset A \) (since they’re equal)
- \( \varnothing \subseteq A \) for any set \( A \)
- \( A \subseteq A \) (reflexivity)
- If \( A \subseteq B \) and \( B \subseteq C \), then \( A \subseteq C \) (transitivity)
1.4.5 Power Set
\( \mathcal{P}(A) = \big\{ \varnothing, \{x\}, \{y\}, \{x, y\} \big\} \)
Example: For \( A = \{a, b, c\} \),
\( \mathcal{P}(A) = \big\{ \varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\} \big\} \)
1.4.6 Set Operations
\( A’ = A^c = U – A = \{ x \in U \mid x \notin A \} \)
- \( A \cup B = \{1,2,3,4\} \)
- \( A \cap B = \{2\} \)
- \( A – B = \{1\} \)
- \( A’ = \{3,4,5\} \)
De Morgan’s Laws for Sets
- \( (A \cup B)’ = A’ \cap B’ \)
- \( (A \cap B)’ = A’ \cup B’ \)
1.4.7 Symmetric Difference
\( A \triangle B = (A – B) \cup (B – A) \)
\( A \triangle B = \{1,2,4\} \)
1.4.8 Fundamental Set Identities
| Law | Identity |
|---|---|
| Commutative | \( A \cup B = B \cup A \), \( A \cap B = B \cap A \) |
| Associative | \( A \cup (B \cup C) = (A \cup B) \cup C \) \( A \cap (B \cap C) = (A \cap B) \cap C \) |
| Distributive | \( A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \) \( A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \) |
| Identity | \( A \cup \varnothing = A \), \( A \cap U = A \) |
| Complement | \( A \cup A’ = U \), \( A \cap A’ = \varnothing \) |
| Double Complement | \( (A’)’ = A \) |
| Idempotent | \( A \cup A = A \), \( A \cap A = A \) |
1.4.9 Venn Diagrams (Conceptual)
Although we can’t embed graphics here, Venn diagrams represent sets as circles inside a rectangle (the universal set \( U \)).
- Union \( A \cup B \): shaded region covering both circles.
- Intersection \( A \cap B \): overlapping region only.
- Complement \( A’ \): everything outside circle \( A \) but inside \( U \).
- Disjoint sets: non-overlapping circles.
1.4.10 Summary of Key Ideas
- A set is a well-defined collection of distinct objects.
- Sets can be described verbally, by listing, or using set-builder notation.
- \( \varnothing \) is a subset of every set.
- Power set \( \mathcal{P}(A) \) has \( 2^n \) elements if \( |A| = n \).
- Set operations mirror logical connectives: union ↔ OR, intersection ↔ AND.
- De Morgan’s Laws apply to both logic and sets.
End of Section 1.4 – Set Theory
Section 1.4: Set Theory – Exercises with Full Solutions
a. 1,2,3
b. {1,2},3
c. {{1},2},3
d. {1,{2},3}
e. {1,2,a,b}
A set must be a well-defined collection enclosed in braces.
- a. Not a set — missing braces.
- b. Not a set — only part “{1,2}” is a set; trailing “,3” makes whole expression invalid.
- c. Not a set — same issue as (b).
- d. Yes — valid set with elements 1, {2}, and 3.
- e. Yes — valid set with elements 1, 2, a, b.
a. First 10 letters of English alphabet.
b. All countries in the world.
c. Students of Addis Ababa University in 2018/2019.
d. Positive multiples of 5.
e. All horses with six legs.
- a. Complete listing: {a, b, c, d, e, f, g, h, i, j}
- b. Set-builder: {x | x is a sovereign country}
- c. Set-builder: {x | x was a registered student at AAU in 2018/19}
- d. Partial listing: {5, 10, 15, 20, …} or set-builder: {x ∈ ℕ | x is divisible by 5}
- e. Empty set: ∅ — since no six-legged horses exist. Complete listing: {}
a. \( A = \{x \in \mathbb{Z} : -4 < x \leq 4\} \)
b. \( B = \{x \in \mathbb{Z} : x^2 < 5\} \)
c. \( C = \{x \in \mathbb{N} : x^3 < 5\} \)
d. \( D = \{x \in \mathbb{R} : x^2 – x = 0\} \)
e. \( E = \{x \in \mathbb{R} : x^2 + 1 = 0\} \)
- a. \( A = \{-3, -2, -1, 0, 1, 2, 3, 4\} \)
- b. \( x^2 < 5 \Rightarrow x \in \{-2, -1, 0, 1, 2\} \) → \( B = \{-2, -1, 0, 1, 2\} \)
- c. \( x \in \mathbb{N} = \{1,2,3,\dots\} \). \( 1^3 = 1 < 5 \), \( 2^3 = 8 > 5 \) → \( C = \{1\} \)
- d. \( x(x – 1) = 0 \Rightarrow x = 0 \text{ or } 1 \) → \( D = \{0, 1\} \)
- e. No real solution → \( E = \varnothing \)
a. \( 15 \in A \)
b. \( -16 \in A \)
c. \( \varnothing \in A \)
d. \( 12 \subset A \)
e. \( \{2,8,14\} \in A \)
f. \( \{2,3,4\} \subseteq A \)
g. \( \{2,4\} \in A \)
h. \( \varnothing \subset A \)
i. \( \{246\} \subseteq A \)
- a. False — 15 is odd
- b. False — negative not positive
- c. False — ∅ is not an element of A
- d. False — 12 is a number, not a set; ⊂ applies to sets
- e. False — {2,8,14} is a subset, not an element
- f. False — 3 ∉ A
- g. False — {2,4} is not an element of A
- h. True — ∅ is subset of every nonempty set
- i. False — 246 ∉ A, so {246} ⊈ A
a. \( \varnothing \subseteq \varnothing \)
b. \( \{1,2\} \subseteq \{1,2\} \)
c. \( \varnothing \in A \) for any set A
d. \( \{\varnothing\} \subseteq A \) for any set A
e. \( 5,7 \subseteq \{5,6,7,8\} \)
f. \( \varnothing \in \{\{\varnothing\}\} \)
g. For any set A, \( A \subset A \)
h. \( \{\varnothing\} = \varnothing \)
- a. True — empty set is subset of every set, including itself.
- b. True — every set is a subset of itself.
- c. False — e.g., A = {1}, ∅ ∉ A.
- d. False — only if ∅ ∈ A; not true for A = {1}.
- e. Nonsense — “5,7” is not a set; if meant {5,7}, then True.
- f. False — only element is {∅}, not ∅.
- g. False — proper subset requires A ≠ A.
- h. False — {∅} has one element; ∅ has none.
a. {ab}
b. {1, 1.5}
c. {a, b}
d. {a, 0.5, x}
- a. \( \mathcal{P} = \{ \varnothing, \{ab\} \} \)
- b. \( \mathcal{P} = \{ \varnothing, \{1\}, \{1.5\}, \{1, 1.5\} \} \)
- c. \( \mathcal{P} = \{ \varnothing, \{a\}, \{b\}, \{a,b\} \} \)
- d. \( \mathcal{P} = \{ \varnothing, \{a\}, \{0.5\}, \{x\}, \{a,0.5\}, \{a,x\}, \{0.5,x\}, \{a,0.5,x\} \} \)
If \( |A| = n \), then:
- Number of subsets = \( 2^n \)
- Number of proper subsets = \( 2^n – 1 \)
- n=1: 2 subsets, 1 proper
- n=2: 4 subsets, 3 proper
- n=3: 8 subsets, 7 proper
- n=4: 16 subsets, 15 proper
- n=8: 256 subsets, 255 proper
- n=10: 1024 subsets, 1023 proper
- n=20: 1,048,576 subsets, 1,048,575 proper
a. Only one subset?
b. Only one proper subset?
c. Exactly 3 proper subsets?
d. Exactly 4 subsets?
- a. Yes — A = ∅. Subsets: {∅} → 1 subset.
- b. Yes — |A| = 2 → 3 subsets total → 2 proper? Wait: proper subsets = \( 2^n – 1 \). Set = 1 ⇒ \( 2^n – 1 = 1 \Rightarrow n = 1 \). A = {x} → proper subsets: {∅} → exactly 1. ✅
- c. Proper subsets = 3 ⇒ \( 2^n – 1 = 3 \Rightarrow 2^n = 4 \Rightarrow n = 2 \). Yes: A = {a,b} → proper subsets: ∅, {a}, {b}.
- d. Subsets = 4 ⇒ \( 2^n = 4 \Rightarrow n = 2 \). Yes: e.g., {a,b}.
a. 64 subsets?
b. 31 proper subsets?
c. No proper subset?
d. 255 proper subsets?
- a. \( 2^n = 64 \Rightarrow n = 6 \)
- b. \( 2^n – 1 = 31 \Rightarrow 2^n = 32 \Rightarrow n = 5 \)
- c. Only if A = ∅ → n = 0
- d. \( 2^n – 1 = 255 \Rightarrow 2^n = 256 \Rightarrow n = 8 \)
a. \( \varnothing \in \mathcal{P}(\varnothing) \)
b. For any A, \( \varnothing \subseteq \mathcal{P}(A) \)
c. For any A, \( A \in \mathcal{P}(A) \)
d. For any A, \( A \subset \mathcal{P}(A) \)
- a. \( \mathcal{P}(\varnothing) = \{\varnothing\} \). So ∅ ∈ {∅} → True
- b. ∅ is subset of every set → True
- c. A ⊆ A ⇒ A ∈ 𝒫(A) → True
- d. False — e.g., A = {1}. Then 𝒫(A) = {∅, {1}}. But 1 ∉ 𝒫(A), so A ⊈ 𝒫(A).
a. If \( A \subseteq B \) and \( B \subseteq C \), then \( A \subseteq C \).
b. If \( A \subset B \) and \( B \subset C \), then \( A \subset C \).
a. Let \( x \in A \). Since \( A \subseteq B \), \( x \in B \). Since \( B \subseteq C \), \( x \in C \). So every \( x \in A \Rightarrow x \in C \) → \( A \subseteq C \).
b. From (a), \( A \subseteq C \). Also, \( A \ne B \) and \( B \ne C \). Suppose \( A = C \). Then \( A = C \supset B \supset A \), contradiction. So \( A \ne C \). Hence \( A \subset C \).
All exercises from Section 1.4: Set Theory with full solutions.